High frequency attenuation measurements of lipid encapsulated contrast agents.

نویسندگان

  • D E Goertz
  • M E Frijlink
  • M M Voormolen
  • N de Jong
  • A F W van der Steen
چکیده

A number of recent studies have indicated the potential of ultrasound contrast agent imaging at high ultrasound frequencies. However, the acoustic properties of microbubbles at frequencies above 10 MHz remain poorly understood at present. In this study we characterize the high frequency attenuation properties of (1) BR14, (2) BR14 that has been mechanically filtered (1 and 2 microm pore sizes) to exclude larger bubbles, and (3) the micron to submicron agent BG2423. A narrowband pulse-echo substitution method is employed with a series of four transducers covering the frequency range from 2 to 50 MHz. For BR14, attenuation decreases rapidly from 2 to 10 MHz and then more gradually from 10 to 50 MHz. For 2 microm filtration, the attenuation peaks between 10 and 15 MHz. For 1 microm filtration, attenuation continues to rise until 50 MHz. The agent BG2423 exhibits a diffuse attenuation peak in the range of 15-25 MHz and remains high until 50 MHz. These results demonstrate a strong influence of bubble size on high frequency attenuation curves, with bubble diameters of 1-2 microm and below having more pronounced acoustic activity at frequencies above 10 MHz.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of temperature, needle gauge and injection rate on the size distribution, concentration and acoustic responses of ultrasound contrast agents at high frequency.

This paper investigated the influence of needle gauge (19G and 27G), injection rate (0.85ml·min(-1), 3ml·min(-1)) and temperature (room temperature (RT) and body temperature (BT)) on the mean diameter, concentration, acoustic attenuation, contrast to tissue ratio (CTR) and normalised subharmonic intensity (NSI) of three ultrasound contrast agents (UCAs): Definity, SonoVue and MicroMarker (untar...

متن کامل

In Vitro Acoustic Characterization of Three Phospholipid Ultrasound Contrast Agents from 12 to 43 MHz

The acoustic properties of two clinical (Definity, Lantheus Medical Imaging, North Billerica, MA, USA; SonoVue, Bracco S.P.A., Milan, Italy) and one pre-clinical (MicroMarker, untargeted, Bracco, Geneva, Switzerland; VisualSonics, Toronto, ON, Canada) ultrasound contrast agent were characterized using a broadband substitution technique over the ultrasound frequency range 12-43 MHz at 20 ± 1°C. ...

متن کامل

Acoustic modeling of shell-encapsulated gas bubbles.

Existing theoretical models do not adequately describe the scatter and attenuation properties of the ultrasound contrast agents Quantison and Myomap. An adapted version of the Rayleigh-Plesset equation, in which the shell is described by a viscoelastic solid, is proposed and validated for these agents and Albunex. The acoustic transmission and scattering are measured in the frequency band from ...

متن کامل

Attenuation of low frequency underwater noise using arrays of air-filled resonators

This paper investigates the acoustic behavior of underwater air-filled resonators that could potentially be used in an underwater noise abatement system. The resonators are similar to Helmholtz resonators without a neck, consisting of underwater inverted air-filled cavities with combinations of rigid and elastic wall members, and they are intended to be fastened to a framework forming a station...

متن کامل

High order harmonic balance formulation of free and encapsulated microbubbles

The radial responses of free or encapsulated micro-bubbles excited by a plane wave of large wavelength are governed by NonLinear Ordinary Differential Equations (NL-ODEs). The nonlinear frequency response details the harmonic content of the time response and constitutes the expected outcome of a high order harmonic analysis. In this paper, a high order harmonic balance analysis of the ”RNNP” (b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ultrasonics

دوره 44 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2006